Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 170 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Cold Start Active Preference Learning in Socio-Economic Domains (2508.05090v1)

Published 7 Aug 2025 in cs.LG

Abstract: Active preference learning is a powerful paradigm for efficiently modeling preferences, yet it suffers from the cold-start problem: a significant drop in performance when no initial labeled data is available. This challenge is particularly acute in computational social systems and economic analysis, where labeled data is often scarce, expensive, and subject to expert noise. To address this gap, we propose a novel framework for cold-start active preference learning. Our method initiates the learning process through a self-supervised pre-training phase, utilizing Principal Component Analysis (PCA) to derive initial pseudo-labels from the data's inherent structure, thereby creating a cold-start model without any initial oracle interaction. Subsequently, the model is refined through an active learning loop that strategically queries a simulated noisy oracle for labels. We conduct extensive experiments on diverse datasets from different domains, including financial credibility, career success rate, and socio-economic status. The results demonstrate that our cold-start approach outperforms standard active learning strategies that begin from a blank slate, achieving higher accuracy with substantially fewer labeled pairs. Our framework offers a practical and effective solution to mitigate the cold-start problem, enhancing the sample efficiency and applicability of preference learning in data-constrained environments. We release our code at https://github.com/Dan-A2/cold-start-preference-learning

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube