Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 86 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 129 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Stochastic Calculus for Pathwise Observables of Markov-Jump Processes: Unification of Diffusion and Jump Dynamics (2508.04647v1)

Published 6 Aug 2025 in cond-mat.stat-mech and math.PR

Abstract: Path-wise observables--functionals of stochastic trajectories--are at the heart of time-average statistical mechanics and are central to thermodynamic inequalities such as uncertainty relations, speed limits, and correlation-bounds. They provide a means of thermodynamic inference in the typical situation, when not all dissipative degrees of freedom in a system are experimentally accessible. So far, theories focusing on path-wise observables have been developing in two major directions, diffusion processes and Markov-jump dynamics, in a virtually disjoint manner. Moreover, even the respective results for diffusion and jump dynamics were derived with a patchwork of different approaches that are predominantly indirect. Stochastic calculus was recently shown to provide a direct approach to path-wise observables of diffusion processes, while a corresponding framework for jump dynamics remained elusive. In our work we develop, in an exact parallelism with continuous-space diffusion, a complete stochastic calculus for path-wise observables of Markov-jump processes. We formulate a "Langevin equation" for jump processes, define general path-wise observables, and establish their covariation structure, whereby we fully account for transients and time-inhomogeneous dynamics. We prove the known kinds of thermodynamic inequalities in their most general form and discus saturation conditions. We determine the response of path-wise observables to general (incl. thermal) perturbations and carry out the continuum limit to achieve the complete unification of diffusion and jump dynamics. Our results open new avenues in the direction of discrete-state analogs of generative diffusion models and the learning of stochastic thermodynamics from fluctuating trajectories.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube