Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 23 tok/s
GPT-5 High 19 tok/s Pro
GPT-4o 108 tok/s
GPT OSS 120B 465 tok/s Pro
Kimi K2 179 tok/s Pro
2000 character limit reached

Reliable and Real-Time Highway Trajectory Planning via Hybrid Learning-Optimization Frameworks (2508.04436v1)

Published 6 Aug 2025 in cs.RO, cs.SY, and eess.SY

Abstract: Autonomous highway driving presents a high collision risk due to fast-changing environments and limited reaction time, necessitating reliable and efficient trajectory planning. This paper proposes a hybrid trajectory planning framework that integrates the adaptability of learning-based methods with the formal safety guarantees of optimization-based approaches. The framework features a two-layer architecture: an upper layer employing a graph neural network (GNN) trained on real-world highway data to predict human-like longitudinal velocity profiles, and a lower layer utilizing path optimization formulated as a mixed-integer quadratic programming (MIQP) problem. The primary contribution is the lower-layer path optimization model, which introduces a linear approximation of discretized vehicle geometry to substantially reduce computational complexity, while enforcing strict spatiotemporal non-overlapping constraints to formally guarantee collision avoidance throughout the planning horizon. Experimental results demonstrate that the planner generates highly smooth, collision-free trajectories in complex real-world emergency scenarios, achieving success rates exceeding 97% with average planning times of 54 ms, thereby confirming real-time capability.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (3)

X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube