Additive properties and absorption laws for generalized inverses (2508.04363v1)
Abstract: Let $a,~f$ be elements in a ring with pseudo core inverses $a{\scriptsize\textcircled{\tiny D}}$, $f{\scriptsize\textcircled{\tiny D}}$, and let $b=f-a$. We prove that the absorption law $a{\scriptsize\textcircled{\tiny D}}(a+f)f{\scriptsize\textcircled{\tiny D}}=a{\scriptsize\textcircled{\tiny D}}+f{\scriptsize\textcircled{\tiny D}}$ holds if and only if $1+a{\scriptsize\textcircled{\tiny D}}b$ is invertible and the additive property $f{\scriptsize\textcircled{\tiny D}}=(1+a{\scriptsize\textcircled{\tiny D}}b){-1}a{\scriptsize\textcircled{\tiny D}}$ is satisfied. We further characterize these properties and establish analogous results for other generalized inverses. Finally, we apply these results to the case of complex matrices.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.