Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 23 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 93 tok/s
GPT OSS 120B 470 tok/s Pro
Kimi K2 183 tok/s Pro
2000 character limit reached

Convolutional autoencoders for the reconstruction of three-dimensional interfacial multiphase flows (2508.04084v1)

Published 6 Aug 2025 in cs.CE, cs.LG, and physics.flu-dyn

Abstract: In this work, we perform a comprehensive investigation of autoencoders for reduced-order modeling of three-dimensional multiphase flows. Focusing on the accuracy of reconstructing multiphase flow volume/mass fractions with a standard convolutional architecture, we examine the advantages and disadvantages of different interface representation choices (diffuse, sharp, level set). We use a combination of synthetic data with non-trivial interface topologies and high-resolution simulation data of multiphase homogeneous isotropic turbulence for training and validation. This study clarifies the best practices for reducing the dimensionality of multiphase flows via autoencoders. Consequently, this paves the path for uncoupling the training of autoencoders for accurate reconstruction and the training of temporal or input/output models such as neural operators (e.g., FNOs, DeepONets) and neural ODEs on the lower-dimensional latent space given by the autoencoders. As such, the implications of this study are significant and of interest to the multiphase flow community and beyond.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.