Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Privacy-Aware Decoding: Mitigating Privacy Leakage of Large Language Models in Retrieval-Augmented Generation (2508.03098v1)

Published 5 Aug 2025 in cs.CL

Abstract: Retrieval-Augmented Generation (RAG) enhances the factual accuracy of LLMs by conditioning outputs on external knowledge sources. However, when retrieval involves private or sensitive data, RAG systems are susceptible to extraction attacks that can leak confidential information through generated responses. We propose Privacy-Aware Decoding (PAD), a lightweight, inference-time defense that adaptively injects calibrated Gaussian noise into token logits during generation. PAD integrates confidence-based screening to selectively protect high-risk tokens, efficient sensitivity estimation to minimize unnecessary noise, and context-aware noise calibration to balance privacy with generation quality. A \renyi Differential Privacy (RDP) accountant rigorously tracks cumulative privacy loss, enabling explicit per-response $(\varepsilon, \delta)$-DP guarantees for sensitive outputs. Unlike prior approaches requiring retraining or corpus-level filtering, PAD is model-agnostic and operates entirely at decoding time with minimal computational overhead. Experiments on three real-world datasets demonstrate that PAD substantially reduces private information leakage while preserving response utility, outperforming existing retrieval- and post-processing-based defenses. Our work takes an important step toward mitigating privacy risks in RAG via decoding strategies, paving the way for universal and scalable privacy solutions in sensitive domains. Our code is available: https://github.com/wang2226/PAD.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube