Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 74 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 98 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Lightweight Fault Detection Architecture for NTT on FPGA (2508.03062v1)

Published 5 Aug 2025 in cs.CR

Abstract: Post-Quantum Cryptographic (PQC) algorithms are mathematically secure and resistant to quantum attacks but can still leak sensitive information in hardware implementations due to natural faults or intentional fault injections. The intent fault injection in side-channel attacks reduces the reliability of crypto implementation in future generation network security procesors. In this regard, this research proposes a lightweight, efficient, recomputation-based fault detection module implemented on a Field Programmable Gate Array (FPGA) for Number Theoretic Transform (NTT). The NTT is primarily composed of memory units and the Cooley-Tukey Butterfly Unit (CT-BU), a critical and computationally intensive hardware component essential for polynomial multiplication. NTT and polynomial multiplication are fundamental building blocks in many PQC algorithms, including Kyber, NTRU, Ring-LWE, and others. In this paper, we present a fault detection method called : Recomputation with a Modular Offset (REMO) for the logic blocks of the CT-BU using Montgomery Reduction and another method called Memory Rule Checkers for the memory components used within the NTT. The proposed fault detection framework sets a new benchmark by achieving high efficiency with significant low implementation cost. It occupies only 16 slices and a single DSP block, with a power consumption of just 3mW in Artix-7 FPGA. The REMO-based detection mechanism achieves a fault coverage of 87.2% to 100%, adaptable across various word sizes, fault bit counts, and fault injection modes. Similarly, the Memory Rule Checkers demonstrate robust performance, achieving 50.7% to 100% fault detection depending on and the nature of injected faults.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube