When AIs Judge AIs: The Rise of Agent-as-a-Judge Evaluation for LLMs (2508.02994v1)
Abstract: As LLMs grow in capability and autonomy, evaluating their outputs-especially in open-ended and complex tasks-has become a critical bottleneck. A new paradigm is emerging: using AI agents as the evaluators themselves. This "agent-as-a-judge" approach leverages the reasoning and perspective-taking abilities of LLMs to assess the quality and safety of other models, promising calable and nuanced alternatives to human evaluation. In this review, we define the agent-as-a-judge concept, trace its evolution from single-model judges to dynamic multi-agent debate frameworks, and critically examine their strengths and shortcomings. We compare these approaches across reliability, cost, and human alignment, and survey real-world deployments in domains such as medicine, law, finance, and education. Finally, we highlight pressing challenges-including bias, robustness, and meta evaluation-and outline future research directions. By bringing together these strands, our review demonstrates how agent-based judging can complement (but not replace) human oversight, marking a step toward trustworthy, scalable evaluation for next-generation LLMs.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.