Context-aware Risk Assessment and Its Application in Autonomous Driving (2508.02919v1)
Abstract: Ensuring safety in autonomous driving requires precise, real-time risk assessment and adaptive behavior. Prior work on risk estimation either outputs coarse, global scene-level metrics lacking interpretability, proposes indicators without concrete integration into autonomous systems, or focuses narrowly on specific driving scenarios. We introduce the Context-aware Risk Index (CRI), a light-weight modular framework that quantifies directional risks based on object kinematics and spatial relationships, dynamically adjusting control commands in real time. CRI employs direction-aware spatial partitioning within a dynamic safety envelope using Responsibility-Sensitive Safety (RSS) principles, a hybrid probabilistic-max fusion strategy for risk aggregation, and an adaptive control policy for real-time behavior modulation. We evaluate CRI on the Bench2Drive benchmark comprising 220 safety-critical scenarios using a state-of-the-art end-to-end model Transfuser++ on challenging routes. Our collision-rate metrics show a 19\% reduction (p = 0.003) in vehicle collisions per failed route, a 20\% reduction (p = 0.004) in collisions per kilometer, a 17\% increase (p = 0.016) in composed driving score, and a statistically significant reduction in penalty scores (p = 0.013) with very low overhead (3.6 ms per decision cycle). These results demonstrate that CRI substantially improves safety and robustness in complex, risk-intensive environments while maintaining modularity and low runtime overhead.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.