Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 102 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 25 tok/s
GPT-5 High 35 tok/s Pro
GPT-4o 99 tok/s
GPT OSS 120B 472 tok/s Pro
Kimi K2 196 tok/s Pro
2000 character limit reached

WhiSQA: Non-Intrusive Speech Quality Prediction Using Whisper Encoder Features (2508.02210v1)

Published 4 Aug 2025 in cs.SD, cs.LG, and eess.AS

Abstract: There has been significant research effort developing neural-network-based predictors of SQ in recent years. While a primary objective has been to develop non-intrusive, i.e.~reference-free, metrics to assess the performance of SE systems, recent work has also investigated the direct inference of neural SQ predictors within the loss function of downstream speech tasks. To aid in the training of SQ predictors, several large datasets of audio with corresponding human labels of quality have been created. Recent work in this area has shown that speech representations derived from large unsupervised or semi-supervised foundational speech models are useful input feature representations for neural SQ prediction. In this work, a novel and robust SQ predictor is proposed based on feature representations extracted from an ASR model, found to be a powerful input feature for the SQ prediction task. The proposed system achieves higher correlation with human MOS ratings than recent approaches on all NISQA test sets and shows significantly better domain adaption compared to the commonly used DNSMOS metric.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com
Youtube Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube