Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Conditional Residual Coding with Explicit-Implicit Temporal Buffering for Learned Video Compression (2508.01818v1)

Published 3 Aug 2025 in eess.IV

Abstract: This work proposes a hybrid, explicit-implicit temporal buffering scheme for conditional residual video coding. Recent conditional coding methods propagate implicit temporal information for inter-frame coding, demonstrating superior coding performance to those relying exclusively on previously decoded frames (i.e. the explicit temporal information). However, these methods require substantial memory to store a large number of implicit features. This work presents a hybrid buffering strategy. For inter-frame coding, it buffers one previously decoded frame as the explicit temporal reference and a small number of learned features as implicit temporal reference. Our hybrid buffering scheme for conditional residual coding outperforms the single use of explicit or implicit information. Moreover, it allows the total buffer size to be reduced to the equivalent of two video frames with a negligible performance drop on 2K video sequences. The ablation experiment further sheds light on how these two types of temporal references impact the coding performance.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube