Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 102 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 30 tok/s
GPT-5 High 27 tok/s Pro
GPT-4o 110 tok/s
GPT OSS 120B 475 tok/s Pro
Kimi K2 203 tok/s Pro
2000 character limit reached

OpenMap: Instruction Grounding via Open-Vocabulary Visual-Language Mapping (2508.01723v1)

Published 3 Aug 2025 in cs.RO

Abstract: Grounding natural language instructions to visual observations is fundamental for embodied agents operating in open-world environments. Recent advances in visual-language mapping have enabled generalizable semantic representations by leveraging vision-LLMs (VLMs). However, these methods often fall short in aligning free-form language commands with specific scene instances, due to limitations in both instance-level semantic consistency and instruction interpretation. We present OpenMap, a zero-shot open-vocabulary visual-language map designed for accurate instruction grounding in navigation tasks. To address semantic inconsistencies across views, we introduce a Structural-Semantic Consensus constraint that jointly considers global geometric structure and vision-language similarity to guide robust 3D instance-level aggregation. To improve instruction interpretation, we propose an LLM-assisted Instruction-to-Instance Grounding module that enables fine-grained instance selection by incorporating spatial context and expressive target descriptions. We evaluate OpenMap on ScanNet200 and Matterport3D, covering both semantic mapping and instruction-to-target retrieval tasks. Experimental results show that OpenMap outperforms state-of-the-art baselines in zero-shot settings, demonstrating the effectiveness of our method in bridging free-form language and 3D perception for embodied navigation.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.