Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 76 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 35 tok/s Pro
2000 character limit reached

CLIMD: A Curriculum Learning Framework for Imbalanced Multimodal Diagnosis (2508.01594v1)

Published 3 Aug 2025 in cs.CV

Abstract: Clinicians usually combine information from multiple sources to achieve the most accurate diagnosis, and this has sparked increasing interest in leveraging multimodal deep learning for diagnosis. However, in real clinical scenarios, due to differences in incidence rates, multimodal medical data commonly face the issue of class imbalance, which makes it difficult to adequately learn the features of minority classes. Most existing methods tackle this issue with resampling or loss reweighting, but they are prone to overfitting or underfitting and fail to capture cross-modal interactions. Therefore, we propose a Curriculum Learning framework for Imbalanced Multimodal Diagnosis (CLIMD). Specifically, we first design multimodal curriculum measurer that combines two indicators, intra-modal confidence and inter-modal complementarity, to enable the model to focus on key samples and gradually adapt to complex category distributions. Additionally, a class distribution-guided training scheduler is introduced, which enables the model to progressively adapt to the imbalanced class distribution during training. Extensive experiments on multiple multimodal medical datasets demonstrate that the proposed method outperforms state-of-the-art approaches across various metrics and excels in handling imbalanced multimodal medical data. Furthermore, as a plug-and-play CL framework, CLIMD can be easily integrated into other models, offering a promising path for improving multimodal disease diagnosis accuracy. Code is publicly available at https://github.com/KHan-UJS/CLIMD.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube