Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 186 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Refine-n-Judge: Curating High-Quality Preference Chains for LLM-Fine-Tuning (2508.01543v1)

Published 3 Aug 2025 in cs.AI

Abstract: LLMs have demonstrated remarkable progress through preference-based fine-tuning, which critically depends on the quality of the underlying training data. While human feedback is essential for improving data quality, it is costly and does not scale well. In this paper, we introduce Refine-n-Judge, an automated iterative approach that leverages a single LLM as both a refiner and a judge to enhance dataset quality. Unlike existing iterative refinement methods, Refine-n-Judge employs an LLM to both generate refinements and explicitly evaluate each improvement, ensuring that every iteration meaningfully enhances the dataset without requiring additional human annotation or a separate reward model. At each step, the LLM refines a response and judges whether the refinement is an improvement over the previous answer. This process continues until the LLM prefers the initial answer over the refinement, indicating no further improvements. This produces sequences of increasing quality, preference-labeled responses ideal for fine-tuning. We demonstrate the effectiveness of Refine-n-Judge across a range of public datasets spanning five corpora, targeting tasks such as coding, math, and conversation. Models (Llama 3.1-8B and Llama 3.3-70B) fine-tuned on Refine-n-Judge-enhanced datasets were preferred by LLM judges in over 74% of comparisons against models tuned on the original dataset by GPT-4. Additionally, we report performance gains: +5% on AlpacaEval and AlpacaEval 2.0, and +19% on MT-Bench. Our results indicate that Refine-n-Judge produces high-quality datasets and scalable model improvements.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com