Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 86 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 129 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

MagicVL-2B: Empowering Vision-Language Models on Mobile Devices with Lightweight Visual Encoders via Curriculum Learning (2508.01540v1)

Published 3 Aug 2025 in cs.CV and cs.AI

Abstract: Vision-LLMs (VLMs) have achieved remarkable breakthroughs in recent years, enabling a diverse array of applications in everyday life. However, the substantial computational and storage demands of VLMs pose significant challenges for their efficient deployment on mobile devices, which represent the most ubiquitous and accessible computing platforms today. In this work, we introduce MagicVL-2B, a novel VLM meticulously optimized for flagship smartphones. MagicVL-2B leverages a lightweight visual encoder with fewer than 100M parameters and features a redesigned dynamic resolution scheme that adaptively generates image tokens without excessive modification of image dimensions. To further enhance the performance of this compact encoder within VLMs, we propose a multimodal curriculum learning strategy that incrementally increases task difficulty and data information density throughout training. This approach substantially improves the model's performance across a variety of sub-tasks. Extensive evaluations on standard VLM benchmarks demonstrate that MagicVL-2B matches the accuracy of current state-of-the-art models while reducing on-device power consumption by 41.1%. These results establish MagicVL-2B as a practical and robust solution for real-world mobile vision-language applications, enabling advanced multimodal intelligence to run directly on smartphones.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube