Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 84 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 96 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Kimi K2 189 tok/s Pro
2000 character limit reached

Physics-Informed Neural Network Approaches for Sparse Data Flow Reconstruction of Unsteady Flow Around Complex Geometries (2508.01314v1)

Published 2 Aug 2025 in cs.LG and physics.flu-dyn

Abstract: The utilization of Deep Neural Networks (DNNs) in physical science and engineering applications has gained traction due to their capacity to learn intricate functions. While large datasets are crucial for training DNN models in fields like computer vision and natural language processing, obtaining such datasets for engineering applications is prohibitively expensive. Physics-Informed Neural Networks (PINNs), a branch of Physics-Informed Machine Learning (PIML), tackle this challenge by embedding physical principles within neural network architectures. PINNs have been extensively explored for solving diverse forward and inverse problems in fluid mechanics. Nonetheless, there is limited research on employing PINNs for flow reconstruction from sparse data under constrained computational resources. Earlier studies were focused on forward problems with well-defined data. The present study attempts to develop models capable of reconstructing the flow field data from sparse datasets mirroring real-world scenarios. This study focuses on two cases: (a) two-dimensional (2D) unsteady laminar flow past a circular cylinder and (b) three-dimensional (3D) unsteady turbulent flow past an ultra-large container ship (ULCS). The first case compares the effectiveness of training methods like Standard PINN and Backward Compatible PINN (BC-PINN) and explores the performance enhancements through systematic relaxation of physics constraints and dynamic weighting of loss function components. The second case highlights the capability of PINN-based models to learn underlying physics from sparse data while accurately reconstructing the flow field for a highly turbulent flow.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube