Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 84 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 92 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Kimi K2 157 tok/s Pro
2000 character limit reached

A Dynamic Allocation Scheme for Adaptive Shared-Memory Mapping on Kilo-core RV Clusters for Attention-Based Model Deployment (2508.01180v1)

Published 2 Aug 2025 in cs.AR

Abstract: Attention-based models demand flexible hardware to manage diverse kernels with varying arithmetic intensities and memory access patterns. Large clusters with shared L1 memory, a common architectural pattern, struggle to fully utilize their processing elements (PEs) when scaled up due to reduced throughput in the hierarchical PE-to-L1 intra-cluster interconnect. This paper presents Dynamic Allocation Scheme (DAS), a runtime programmable address remapping hardware unit coupled with a unified memory allocator, designed to minimize data access contention of PEs onto the multi-banked L1. We evaluated DAS on an aggressively scaled-up 1024-PE RISC-V cluster with Non-Uniform Memory Access (NUMA) PE-to-L1 interconnect to demonstrate its potential for improving data locality in large parallel machine learning workloads. For a Vision Transformer (ViT)-L/16 model, each encoder layer executes in 5.67 ms, achieving a 1.94x speedup over the fixed word-level interleaved baseline with 0.81 PE utilization. Implemented in 12nm FinFET technology, DAS incurs <0.1 % area overhead.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.