Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 23 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 93 tok/s
GPT OSS 120B 470 tok/s Pro
Kimi K2 183 tok/s Pro
2000 character limit reached

Symbolic regression and precision LHC physics (2508.00989v1)

Published 1 Aug 2025 in hep-ph

Abstract: We explore the use of symbolic regression to derive compact analytical expressions for angular observables relevant to electroweak boson production at the Large Hadron Collider (LHC). Focusing on the angular coefficients that govern the decay distributions of $W$ and $Z$ bosons, we investigate whether symbolic models can well approximate these quantities, typically computed via computationally costly numerical procedures, with high fidelity and interpretability. Using the PySR package, we first validate the approach in controlled settings, namely in angular distributions in lepton-lepton collisions in QED and in leading-order Drell-Yan production at the LHC. We then apply symbolic regression to extract closed-form expressions for the angular coefficients $A_i$ as functions of transverse momentum, rapidity, and invariant mass, using next-to-leading order simulations of $pp \to \ell+\ell-$ events. Our results demonstrate that symbolic regression can produce accurate and generalisable expressions that match Monte Carlo predictions within uncertainties, while preserving interpretability and providing insight into the kinematic dependence of angular observables.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube