Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 109 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Text-Attributed Graph Anomaly Detection via Multi-Scale Cross- and Uni-Modal Contrastive Learning (2508.00513v1)

Published 1 Aug 2025 in cs.LG

Abstract: The widespread application of graph data in various high-risk scenarios has increased attention to graph anomaly detection (GAD). Faced with real-world graphs that often carry node descriptions in the form of raw text sequences, termed text-attributed graphs (TAGs), existing graph anomaly detection pipelines typically involve shallow embedding techniques to encode such textual information into features, and then rely on complex self-supervised tasks within the graph domain to detect anomalies. However, this text encoding process is separated from the anomaly detection training objective in the graph domain, making it difficult to ensure that the extracted textual features focus on GAD-relevant information, seriously constraining the detection capability. How to seamlessly integrate raw text and graph topology to unleash the vast potential of cross-modal data in TAGs for anomaly detection poses a challenging issue. This paper presents a novel end-to-end paradigm for text-attributed graph anomaly detection, named CMUCL. We simultaneously model data from both text and graph structures, and jointly train text and graph encoders by leveraging cross-modal and uni-modal multi-scale consistency to uncover potential anomaly-related information. Accordingly, we design an anomaly score estimator based on inconsistency mining to derive node-specific anomaly scores. Considering the lack of benchmark datasets tailored for anomaly detection on TAGs, we release 8 datasets to facilitate future research. Extensive evaluations show that CMUCL significantly advances in text-attributed graph anomaly detection, delivering an 11.13% increase in average accuracy (AP) over the suboptimal.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.