Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 41 tok/s
GPT-5 High 35 tok/s Pro
GPT-4o 104 tok/s
GPT OSS 120B 461 tok/s Pro
Kimi K2 215 tok/s Pro
2000 character limit reached

EdgeInfinite-Instruct: Bridging SFT-Based Optimization and NPU-Level Efficiency for Edge Devices (2508.00370v1)

Published 1 Aug 2025 in cs.CL and cs.LG

Abstract: Deploying Transformer-based LLMs on resource-constrained edge devices for long-sequence tasks remains challenging due to the quadratic time complexity of self-attention and growing Key-Value (KV) cache demands. While existing KV cache optimizations improve memory efficiency, they often fail to reduce time to first token (TTFT) and may degrade performance through token pruning. Alternative sequence modeling architectures address some of these limitations, but typically require full retraining and lack infrastructure support. EdgeInfinite offers an efficient solution by fine-tuning only a small subset of parameters, maintaining quality while reducing both computational and memory costs, including improved TTFT. However, its instruction-following ability is limited, and it lacks mobile-specific optimizations. To address these issues, we propose EdgeInfinite-Instruct, which introduces a Segmented Supervised Fine-Tuning (S-SFT) strategy tailored to long-sequence tasks such as summarization and question answering. We further optimized EdgeInfinite-Instruct for efficient deployment on edge NPUs by employing fine-grained post-training quantization (PTQ) to reduce computational demands while maintaining accuracy, and by implementing a fixed-shape computation graph that balances memory usage and on-device efficiency through scenario-specific customization of input token and cache sizes. Experiments on long-context benchmarks and real-world mobile tasks show that our approach improves domain-specific performance while maintaining efficiency on NPU-accelerated edge devices.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run paper prompts using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube