Ambisonics Super-Resolution Using A Waveform-Domain Neural Network (2508.00240v1)
Abstract: Ambisonics is a spatial audio format describing a sound field. First-order Ambisonics (FOA) is a popular format comprising only four channels. This limited channel count comes at the expense of spatial accuracy. Ideally one would be able to take the efficiency of a FOA format without its limitations. We have devised a data-driven spatial audio solution that retains the efficiency of the FOA format but achieves quality that surpasses conventional renderers. Utilizing a fully convolutional time-domain audio neural network (Conv-TasNet), we created a solution that takes a FOA input and provides a higher order Ambisonics (HOA) output. This data driven approach is novel when compared to typical physics and psychoacoustic based renderers. Quantitative evaluations showed a 0.6dB average positional mean squared error difference between predicted and actual 3rd order HOA. The median qualitative rating showed an 80% improvement in perceived quality over the traditional rendering approach.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.