Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 103 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 27 tok/s
GPT-5 High 37 tok/s Pro
GPT-4o 92 tok/s
GPT OSS 120B 467 tok/s Pro
Kimi K2 241 tok/s Pro
2000 character limit reached

Scientific Machine Learning with Kolmogorov-Arnold Networks (2507.22959v1)

Published 30 Jul 2025 in cs.LG, cs.CE, math-ph, and math.MP

Abstract: The field of scientific machine learning, which originally utilized multilayer perceptrons (MLPs), is increasingly adopting Kolmogorov-Arnold Networks (KANs) for data encoding. This shift is driven by the limitations of MLPs, including poor interpretability, fixed activation functions, and difficulty capturing localized or high-frequency features. KANs address these issues with enhanced interpretability and flexibility, enabling more efficient modeling of complex nonlinear interactions and effectively overcoming the constraints associated with conventional MLP architectures. This review categorizes recent progress in KAN-based models across three distinct perspectives: (i) data-driven learning, (ii) physics-informed modeling, and (iii) deep operator learning. Each perspective is examined through the lens of architectural design, training strategies, application efficacy, and comparative evaluation against MLP-based counterparts. By benchmarking KANs against MLPs, we highlight consistent improvements in accuracy, convergence, and spectral representation, clarifying KANs' advantages in capturing complex dynamics while learning more effectively. Finally, this review identifies critical challenges and open research questions in KAN development, particularly regarding computational efficiency, theoretical guarantees, hyperparameter tuning, and algorithm complexity. We also outline future research directions aimed at improving the robustness, scalability, and physical consistency of KAN-based frameworks.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run paper prompts using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com