Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 109 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

CodableLLM: Automating Decompiled and Source Code Mapping for LLM Dataset Generation (2507.22066v1)

Published 2 Jul 2025 in cs.SE and cs.CR

Abstract: The generation of large, high-quality datasets for code understanding and generation remains a significant challenge, particularly when aligning decompiled binaries with their original source code. To address this, we present CodableLLM, a Python framework designed to automate the creation and curation of datasets by mapping decompiled functions to their corresponding source functions. This process enhances the alignment between decompiled and source code representations, facilitating the development of LLMs capable of understanding and generating code across multiple abstraction levels. CodableLLM supports multiple programming languages and integrates with existing decompilers and parsers to streamline dataset generation. This paper presents the design and implementation of CodableLLM, evaluates its performance in dataset creation, and compares it to existing tools in the field. The results demonstrate that CodableLLM offers a robust and efficient solution for generating datasets tailored for code-focused LLMs.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)

X Twitter Logo Streamline Icon: https://streamlinehq.com