Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 170 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Leveraging Trustworthy AI for Automotive Security in Multi-Domain Operations: Towards a Responsive Human-AI Multi-Domain Task Force for Cyber Social Security (2507.21145v1)

Published 23 Jul 2025 in cs.CR

Abstract: Multi-Domain Operations (MDOs) emphasize cross-domain defense against complex and synergistic threats, with civilian infrastructures like smart cities and Connected Autonomous Vehicles (CAVs) emerging as primary targets. As dual-use assets, CAVs are vulnerable to Multi-Surface Threats (MSTs), particularly from Adversarial Machine Learning (AML) which can simultaneously compromise multiple in-vehicle ML systems (e.g., Intrusion Detection Systems, Traffic Sign Recognition Systems). Therefore, this study investigates how key hyperparameters in Decision Tree-based ensemble models-Random Forest (RF), Gradient Boosting (GB), and Extreme Gradient Boosting (XGB)-affect the time required for a Black-Box AML attack i.e. Zeroth Order Optimization (ZOO). Findings show that parameters like the number of trees or boosting rounds significantly influence attack execution time, with RF and GB being more sensitive than XGB. Adversarial Training (AT) time is also analyzed to assess the attacker's window of opportunity. By optimizing hyperparameters, this research supports Defensive Trustworthy AI (D-TAI) practices within MST scenarios and contributes to the development of resilient ML systems for civilian and military domains, aligned with Cyber Social Security framework in MDOs and Human-AI Multi-Domain Task Forces.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.