Clustering by Attention: Leveraging Prior Fitted Transformers for Data Partitioning (2507.20369v1)
Abstract: Clustering is a core task in machine learning with wide-ranging applications in data mining and pattern recognition. However, its unsupervised nature makes it inherently challenging. Many existing clustering algorithms suffer from critical limitations: they often require careful parameter tuning, exhibit high computational complexity, lack interpretability, or yield suboptimal accuracy, especially when applied to large-scale datasets. In this paper, we introduce a novel clustering approach based on meta-learning. Our approach eliminates the need for parameter optimization while achieving accuracy that outperforms state-of-the-art clustering techniques. The proposed technique leverages a few pre-clustered samples to guide the clustering process for the entire dataset in a single forward pass. Specifically, we employ a pre-trained Prior-Data Fitted Transformer Network (PFN) to perform clustering. The algorithm computes attention between the pre-clustered samples and the unclustered samples, allowing it to infer cluster assignments for the entire dataset based on the learned relation. We theoretically and empirically demonstrate that, given just a few pre-clustered examples, the model can generalize to accurately cluster the rest of the dataset. Experiments on challenging benchmark datasets show that our approach can successfully cluster well-separated data without any pre-clustered samples, and significantly improves performance when a few clustered samples are provided. We show that our approach is superior to the state-of-the-art techniques. These results highlight the effectiveness and scalability of our approach, positioning it as a promising alternative to existing clustering techniques.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.