Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Enhancing IoT Intrusion Detection Systems through Adversarial Training (2507.19739v1)

Published 26 Jul 2025 in cs.ET

Abstract: The augmentation of Internet of Things (IoT) devices transformed both automation and connectivity but revealed major security vulnerabilities in networks. We address these challenges by designing a robust intrusion detection system (IDS) to detect complex attacks by learning patterns from the NF-ToN-IoT v2 dataset. Intrusion detection has a realistic testbed through the dataset's rich and high-dimensional features. We combine distributed preprocessing to manage the dataset size with Fast Gradient Sign Method (FGSM) adversarial attacks to mimic actual attack scenarios and XGBoost model adversarial training for improved system robustness. Our system achieves 95.3% accuracy on clean data and 94.5% accuracy on adversarial data to show its effectiveness against complex threats. Adversarial training demonstrates its potential to strengthen IDS against evolving cyber threats and sets the foundation for future studies. Real-time IoT environments represent a future deployment opportunity for these systems, while extensions to detect emerging threats and zero-day vulnerabilities would enhance their utility.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.