Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 29 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 102 tok/s
GPT OSS 120B 462 tok/s Pro
Kimi K2 181 tok/s Pro
2000 character limit reached

3DGauCIM: Accelerating Static/Dynamic 3D Gaussian Splatting via Digital CIM for High Frame Rate Real-Time Edge Rendering (2507.19133v1)

Published 25 Jul 2025 in cs.AR

Abstract: Dynamic 3D Gaussian splatting (3DGS) extends static 3DGS to render dynamic scenes, enabling AR/VR applications with moving objects. However, implementing dynamic 3DGS on edge devices faces challenges: (1) Loading all Gaussian parameters from DRAM for frustum culling incurs high energy costs. (2) Increased parameters for dynamic scenes elevate sorting latency and energy consumption. (3) Limited on-chip buffer capacity with higher parameters reduces buffer reuse, causing frequent DRAM access. (4) Dynamic 3DGS operations are not readily compatible with digital compute-in-memory (DCIM). These challenges hinder real-time performance and power efficiency on edge devices, leading to reduced battery life or requiring bulky batteries. To tackle these challenges, we propose algorithm-hardware co-design techniques. At the algorithmic level, we introduce three optimizations: (1) DRAM-access reduction frustum culling to lower DRAM access overhead, (2) Adaptive tile grouping to enhance on-chip buffer reuse, and (3) Adaptive interval initialization Bucket-Bitonic sort to reduce sorting latency. At the hardware level, we present a DCIM-friendly computation flow that is evaluated using the measured data from a 16nm DCIM prototype chip. Our experimental results on Large-Scale Real-World Static/Dynamic Datasets demonstrate the ability to achieve high frame rate real-time rendering exceeding 200 frame per second (FPS) with minimal power consumption, merely 0.28 W for static Large-Scale Real-World scenes and 0.63 W for dynamic Large-Scale Real-World scenes. This work successfully addresses the significant challenges of implementing static/dynamic 3DGS technology on resource-constrained edge devices.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.