Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 86 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Rethinking Dataset Discovery with DataScout (2507.18971v1)

Published 25 Jul 2025 in cs.HC

Abstract: Dataset Search -- the process of finding appropriate datasets for a given task -- remains a critical yet under-explored challenge in data science workflows. Assessing dataset suitability for a task (e.g., training a classification model) is a multi-pronged affair that involves understanding: data characteristics (e.g. granularity, attributes, size), semantics (e.g., data semantics, creation goals), and relevance to the task at hand. Present-day dataset search interfaces are restrictive -- users struggle to convey implicit preferences and lack visibility into the search space and result inclusion criteria -- making query iteration challenging. To bridge these gaps, we introduce DataScout to proactively steer users through the process of dataset discovery via -- (i) AI-assisted query reformulations informed by the underlying search space, (ii) semantic search and filtering based on dataset content, including attributes (columns) and granularity (rows), and (iii) dataset relevance indicators, generated dynamically based on the user-specified task. A within-subjects study with 12 participants comparing DataScout to keyword and semantic dataset search reveals that users uniquely employ DataScout's features not only for structured explorations, but also to glean feedback on their search queries and build conceptual models of the search space.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.