Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 15 tok/s
GPT-5 High 11 tok/s Pro
GPT-4o 102 tok/s
GPT OSS 120B 457 tok/s Pro
Kimi K2 203 tok/s Pro
2000 character limit reached

Transform Before You Query: A Privacy-Preserving Approach for Vector Retrieval with Embedding Space Alignment (2507.18518v1)

Published 24 Jul 2025 in cs.IR

Abstract: Vector Database (VDB) can efficiently index and search high-dimensional vector embeddings from unstructured data, crucially enabling fast semantic similarity search essential for modern AI applications like generative AI and recommendation systems. Since current VDB service providers predominantly use proprietary black-box models, users are forced to expose raw query text to them via API in exchange for the vector retrieval services. Consequently, if query text involves confidential records from finance or healthcare domains, this mechanism inevitably leads to critical leakage of user's sensitive information. To address this issue, we introduce STEER (\textbf{S}ecure \textbf{T}ransformed \textbf{E}mbedding v\textbf{E}ctor\textbf{ R}etrieval), a private vector retrieval framework that leverages the alignment relationship between the semantic spaces of different embedding models to derive approximate embeddings for the query text. STEER performs the retrieval using the approximate embeddings within the original VDB and requires no modifications to the server side. Our theoretical and experimental analyses demonstrate that STEER effectively safeguards query text privacy while maintaining the retrieval accuracy. Even though approximate embeddings are approximations of the embeddings from proprietary models, they still prevent the providers from recovering the query text through Embedding Inversion Attacks (EIAs). Extensive experimental results show that Recall@100 of STEER can basically achieve a decrease of less than 5\%. Furthermore, even when searching within a text corpus of millions of entries, STEER achieves a Recall@20 accuracy 20\% higher than current baselines.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.