AcceleratedKernels.jl: Cross-Architecture Parallel Algorithms from a Unified, Transpiled Codebase (2507.16710v1)
Abstract: AcceleratedKernels.jl is introduced as a backend-agnostic library for parallel computing in Julia, natively targeting NVIDIA, AMD, Intel, and Apple accelerators via a unique transpilation architecture. Written in a unified, compact codebase, it enables productive parallel programming with minimised implementation and usage complexities. Benchmarks of arithmetic-heavy kernels show performance on par with C and OpenMP-multithreaded CPU implementations, with Julia sometimes offering more consistent and predictable numerical performance than conventional C compilers. Exceptional composability is highlighted as simultaneous CPU-GPU co-processing is achievable - such as CPU-GPU co-sorting - with transparent use of hardware-specialised MPI implementations. Tests on the Baskerville Tier 2 UK HPC cluster achieved world-class sorting throughputs of 538-855 GB/s using 200 NVIDIA A100 GPUs, comparable to the highest literature-reported figure of 900 GB/s achieved on 262,144 CPU cores. The use of direct NVLink GPU-to-GPU interconnects resulted in a 4.93x speedup on average; normalised by a combined capital, running and environmental cost, communication-heavy HPC tasks only become economically viable on GPUs if GPUDirect interconnects are employed.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.