2000 character limit reached
Second-order boundary estimates for solutions to a class of quasilinear elliptic equations (2507.16402v1)
Published 22 Jul 2025 in math.AP
Abstract: We prove global second-order regularity for a class of quasilinear elliptic equations, both with homogeneous Dirichlet and Neumann boundary conditions. A condition on the integrability of the second fundamental form on the boundary of the domain is required. As a consequence, with the additional assumption that the source term has a sign, we obtain integrability properties of the inverse of the gradient of the solution. Assuming convexity of the domain, no boundary regularity is required.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.