Learning Patient-Specific Spatial Biomarker Dynamics via Operator Learning for Alzheimer's Disease Progression (2507.16148v1)
Abstract: Alzheimer's disease (AD) is a complex, multifactorial neurodegenerative disorder with substantial heterogeneity in progression and treatment response. Despite recent therapeutic advances, predictive models capable of accurately forecasting individualized disease trajectories remain limited. Here, we present a machine learning-based operator learning framework for personalized modeling of AD progression, integrating longitudinal multimodal imaging, biomarker, and clinical data. Unlike conventional models with prespecified dynamics, our approach directly learns patient-specific disease operators governing the spatiotemporal evolution of amyloid, tau, and neurodegeneration biomarkers. Using Laplacian eigenfunction bases, we construct geometry-aware neural operators capable of capturing complex brain dynamics. Embedded within a digital twin paradigm, the framework enables individualized predictions, simulation of therapeutic interventions, and in silico clinical trials. Applied to AD clinical data, our method achieves high prediction accuracy exceeding 90% across multiple biomarkers, substantially outperforming existing approaches. This work offers a scalable, interpretable platform for precision modeling and personalized therapeutic optimization in neurodegenerative diseases.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.