Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Chart-R1: Chain-of-Thought Supervision and Reinforcement for Advanced Chart Reasoner (2507.15509v1)

Published 21 Jul 2025 in cs.AI and cs.CV

Abstract: Recently, inspired by OpenAI-o1/o3 and Deepseek-R1, the R1-Style method based on reinforcement learning fine-tuning has received widespread attention from the community. Previous R1-Style methods mainly focus on mathematical reasoning and code intelligence. It is of great research significance to verify their advantages on more general multimodal data. Chart is an important multimodal data type with rich information, which brings important research challenges in complex reasoning. In this work, we introduce Chart-R1, a chart-domain vision-LLM with reinforcement learning fine-tuning to enable complex chart reasoning. To support Chart-R1, we first propose a novel programmatic data synthesis technology to generate high-quality step-by-step chart reasoning data covering single- and multi-subcharts, which makes up for the lack of reasoning data in the chart domain. Then we develop a two-stage training strategy: Chart-COT with step-by-step chain-of-thought supervision, and Chart-RFT with numerically sensitive reinforcement fine-tuning. Chart-COT aims to decompose complex chart reasoning tasks into fine-grained, understandable subtasks through step-by-step supervision, which lays a good foundation for improving the reasoning level of reinforcement learning. Chart-RFT utilize the typical group relative policy optimization strategy, in which a relatively soft reward is adopted for numerical response to emphasize the numerical sensitivity in the chart domain. We conduct extensive experiments on open-source benchmarks and self-built chart reasoning dataset (\emph{i.e., ChartRQA}). Experimental results show that Chart-R1 has significant advantages compared to chart-domain methods, even comparable to open/closed source large-scale models (\emph{e.g., GPT-4o, Claude-3.5}).

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube