Multiple Hypothesis Testing To Estimate The Number Of Communities in Stochastic Block Models (2507.15471v1)
Abstract: Clustering of single-cell RNA sequencing (scRNA-seq) datasets can give key insights into the biological functions of cells. Therefore, it is not surprising that network-based community detection methods (one of the better clustering methods) are increasingly being used for the clustering of scRNA-seq datasets. The main challenge in implementing network-based community detection methods for scRNA-seq datasets is that these methods \emph{apriori} require the true number of communities or blocks for estimating the community memberships. Although there are existing methods for estimating the number of communities, they are not suitable for noisy scRNA-seq datasets. Moreover, we require an appropriate method for extracting suitable networks from scRNA-seq datasets. For addressing these issues, we present a two-fold solution: i) a simple likelihood-based approach for extracting stochastic block models (SBMs) out of scRNA-seq datasets, ii) a new sequential multiple testing (SMT) method for estimating the number of communities in SBMs. We study the theoretical properties of SMT and establish its consistency under moderate sparsity conditions. In addition, we compare the numerical performance of the SMT with several existing methods. We also show that our approach performs competitively well against existing methods for estimating the number of communities on benchmark scRNA-seq datasets. Finally, we use our approach for estimating subgroups of a human retina bipolar single cell dataset.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.