Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 29 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 102 tok/s
GPT OSS 120B 462 tok/s Pro
Kimi K2 181 tok/s Pro
2000 character limit reached

FullRecall: A Semantic Search-Based Ranking Approach for Maximizing Recall in Patent Retrieval (2507.14946v1)

Published 20 Jul 2025 in cs.IR and cs.LG

Abstract: Patent examiners and inventors face significant pressure to verify the originality and non-obviousness of inventions, and the intricate nature of patent data intensifies the challenges of patent retrieval. Therefore, there is a pressing need to devise cutting-edge retrieval strategies that can reliably achieve the desired recall. This study introduces FullRecall, a novel patent retrieval approach that effectively manages the complexity of patent data while maintaining the reliability of relevance matching and maximising recall. It leverages IPC-guided knowledge to generate informative phrases, which are processed to extract key information in the form of noun phrases characterising the query patent under observation. From these, the top k keyphrases are selected to construct a query for retrieving a focused subset of the dataset. This initial retrieval step achieves complete recall, successfully capturing all relevant documents. To further refine the results, a ranking scheme is applied to the retrieved subset, reducing its size while maintaining 100% recall. This multi-phase process demonstrates an effective strategy for balancing precision and recall in patent retrieval tasks. Comprehensive experiments were conducted, and the results were compared with baseline studies, namely HRR2 [1] and ReQ-ReC [2]. The proposed approach yielded superior results, achieving 100% recall in all five test cases. However, HRR2[1] recall values across the five test cases were 10%, 25%, 33.3%, 0%, and 14.29%, while ReQ-ReC [2] showed 50% for the first test case, 25% for the second test case, and 0% for the third, fourth, and fifth test cases. The 100% recall ensures that no relevant prior art is overlooked, thereby strengthening the patent pre-filing and examination processes, hence reducing potential legal risks.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.