Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 85 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 10 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

SAFT: Structure-Aware Fine-Tuning of LLMs for AMR-to-Text Generation (2507.13381v1)

Published 15 Jul 2025 in cs.CL and cs.LG

Abstract: LLMs are increasingly applied to tasks involving structured inputs such as graphs. Abstract Meaning Representations (AMRs), which encode rich semantics as directed graphs, offer a rigorous testbed for evaluating LLMs on text generation from such structures. Yet, current methods often arbitrarily linearize AMRs, discarding key structural cues, or rely on architectures incompatible with standard LLMs. We introduce SAFT, a structure-aware fine-tuning approach that injects graph topology into pretrained LLMs without architectural changes. We compute direction-sensitive positional encodings from the magnetic Laplacian of transformed AMRs and project them into the embedding space of the LLM. While possibly applicable to any graph-structured inputs, we focus on AMR-to-text generation as a representative and challenging benchmark. SAFT sets a new state-of-the-art on AMR 3.0 with a 3.5 BLEU improvement over baselines. Gains scale with graph complexity, highlighting the value of structure-aware representations in enhancing LLM performance. SAFT offers a general and effective pathway for bridging structured data and LLMs.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube