Probabilistic Soundness Guarantees in LLM Reasoning Chains (2507.12948v1)
Abstract: In reasoning chains generated by LLMs, initial errors often propagate and undermine the reliability of the final conclusion. Current LLM-based error detection methods often fail to detect propagated errors because they do not properly account for how earlier errors might corrupt judgments of downstream reasoning. To better detect such propagated errors, we introduce Autoregressive Reasoning Entailment Stability (ARES), a novel probabilistic framework that prevents error propagation by judging each claim based only on previously-assessed sound premises. This inductive method yields a nuanced score for each step and provides certified statistical guarantees of its soundness, rather than a brittle binary label. ARES achieves state-of-the-art performance across four benchmarks (72.1% Macro-F1, +8.2 points) and demonstrates superior robustness on very long synthetic reasoning chains, where it excels at detecting propagated errors (90.3% F1, +27.6 points).