Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
GPT-4o
Gemini 2.5 Pro Pro
o3 Pro
GPT-4.1 Pro
DeepSeek R1 via Azure Pro
2000 character limit reached

DeduCE: Deductive Consistency as a Framework to Evaluate LLM Reasoning (2504.07080v1)

Published 9 Apr 2025 in cs.CL, cs.AI, and cs.LG

Abstract: Despite great performance on Olympiad-level reasoning problems, frontier LLMs can still struggle on high school math when presented with novel problems outside standard benchmarks. Going beyond final accuracy, we propose a deductive consistency metric to analyze chain-of-thought output from LMs.Formally, deductive reasoning involves two subtasks: understanding a set of input premises and inferring the conclusions that follow from them. The proposed metric studies LMs' performance on these subtasks, with the goal of explaining LMs' reasoning errors on novel problems: how well do LMs understand input premises with increasing context lengths, and how well can they infer conclusions over multiple reasoning hops? Since existing benchmarks may be memorized, we develop a pipeline to evaluate LMs' deductive consistency on novel, perturbed versions of benchmark problems. On novel grade school math problems (GSM-8k), we find that LMs are fairly robust to increasing number of input premises, but suffer significant accuracy decay as the number of reasoning hops is increased. Interestingly, these errors are masked in the original benchmark as all models achieve near 100% accuracy. As we increase the number of solution steps using a synthetic dataset, prediction over multiple hops still remains the major source of error compared to understanding input premises. Other factors, such as shifts in language style or natural propagation of early errors do not explain the trends. Our analysis provides a new view to characterize LM reasoning -- as computations over a window of input premises and reasoning hops -- that can provide unified evaluation across problem domains.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.