Detecting In-Person Conversations in Noisy Real-World Environments with Smartwatch Audio and Motion Sensing (2507.12002v1)
Abstract: Social interactions play a crucial role in shaping human behavior, relationships, and societies. It encompasses various forms of communication, such as verbal conversation, non-verbal gestures, facial expressions, and body language. In this work, we develop a novel computational approach to detect a foundational aspect of human social interactions, in-person verbal conversations, by leveraging audio and inertial data captured with a commodity smartwatch in acoustically-challenging scenarios. To evaluate our approach, we conducted a lab study with 11 participants and a semi-naturalistic study with 24 participants. We analyzed machine learning and deep learning models with 3 different fusion methods, showing the advantages of fusing audio and inertial data to consider not only verbal cues but also non-verbal gestures in conversations. Furthermore, we perform a comprehensive set of evaluations across activities and sampling rates to demonstrate the benefits of multimodal sensing in specific contexts. Overall, our framework achieved 82.0$\pm$3.0% macro F1-score when detecting conversations in the lab and 77.2$\pm$1.8% in the semi-naturalistic setting.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.