Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 34 tok/s Pro
GPT-5 Medium 40 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

ID-EA: Identity-driven Text Enhancement and Adaptation with Textual Inversion for Personalized Text-to-Image Generation (2507.11990v1)

Published 16 Jul 2025 in cs.CV

Abstract: Recently, personalized portrait generation with a text-to-image diffusion model has significantly advanced with Textual Inversion, emerging as a promising approach for creating high-fidelity personalized images. Despite its potential, current Textual Inversion methods struggle to maintain consistent facial identity due to semantic misalignments between textual and visual embedding spaces regarding identity. We introduce ID-EA, a novel framework that guides text embeddings to align with visual identity embeddings, thereby improving identity preservation in a personalized generation. ID-EA comprises two key components: the ID-driven Enhancer (ID-Enhancer) and the ID-conditioned Adapter (ID-Adapter). First, the ID-Enhancer integrates identity embeddings with a textual ID anchor, refining visual identity embeddings derived from a face recognition model using representative text embeddings. Then, the ID-Adapter leverages the identity-enhanced embedding to adapt the text condition, ensuring identity preservation by adjusting the cross-attention module in the pre-trained UNet model. This process encourages the text features to find the most related visual clues across the foreground snippets. Extensive quantitative and qualitative evaluations demonstrate that ID-EA substantially outperforms state-of-the-art methods in identity preservation metrics while achieving remarkable computational efficiency, generating personalized portraits approximately 15 times faster than existing approaches.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.