Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 40 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

Distribution-Free Uncertainty-Aware Virtual Sensing via Conformalized Neural Operators (2507.11574v1)

Published 15 Jul 2025 in cs.LG, cs.AI, and stat.ML

Abstract: Robust uncertainty quantification (UQ) remains a critical barrier to the safe deployment of deep learning in real-time virtual sensing, particularly in high-stakes domains where sparse, noisy, or non-collocated sensor data are the norm. We introduce the Conformalized Monte Carlo Operator (CMCO), a framework that transforms neural operator-based virtual sensing with calibrated, distribution-free prediction intervals. By unifying Monte Carlo dropout with split conformal prediction in a single DeepONet architecture, CMCO achieves spatially resolved uncertainty estimates without retraining, ensembling, or custom loss design. Our method addresses a longstanding challenge: how to endow operator learning with efficient and reliable UQ across heterogeneous domains. Through rigorous evaluation on three distinct applications: turbulent flow, elastoplastic deformation, and global cosmic radiation dose estimation-CMCO consistently attains near-nominal empirical coverage, even in settings with strong spatial gradients and proxy-based sensing. This breakthrough offers a general-purpose, plug-and-play UQ solution for neural operators, unlocking real-time, trustworthy inference in digital twins, sensor fusion, and safety-critical monitoring. By bridging theory and deployment with minimal computational overhead, CMCO establishes a new foundation for scalable, generalizable, and uncertainty-aware scientific machine learning.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.