Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

LiLM-RDB-SFC: Lightweight Language Model with Relational Database-Guided DRL for Optimized SFC Provisioning (2507.10903v1)

Published 15 Jul 2025 in cs.NI, cs.CL, and cs.LG

Abstract: Effective management of Service Function Chains (SFCs) and optimal Virtual Network Function (VNF) placement are critical challenges in modern Software-Defined Networking (SDN) and Network Function Virtualization (NFV) environments. Although Deep Reinforcement Learning (DRL) is widely adopted for dynamic network decision-making, its inherent dependency on structured data and fixed action rules often limits adaptability and responsiveness, particularly under unpredictable network conditions. This paper introduces LiLM-RDB-SFC, a novel approach combining Lightweight LLM (LiLM) with Relational Database (RDB) to answer network state queries to guide DRL model for efficient SFC provisioning. Our proposed approach leverages two LiLMs, Bidirectional and Auto-Regressive Transformers (BART) and the Fine-tuned Language Net T5 (FLAN-T5), to interpret network data and support diverse query types related to SFC demands, data center resources, and VNF availability. Results demonstrate that FLAN-T5 outperforms BART with a lower test loss (0.00161 compared to 0.00734), higher accuracy (94.79% compared to 80.2%), and less processing time (2h 2min compared to 2h 38min). Moreover, when compared to the LLM SQLCoder, FLAN-T5 matches the accuracy of SQLCoder while cutting processing time by 96% (SQLCoder: 54 h 43 min; FLAN-T5: 2 h 2 min).

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube