Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 95 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 95 tok/s Pro
GPT OSS 120B 391 tok/s Pro
Kimi K2 159 tok/s Pro
2000 character limit reached

Scalable Unsupervised Segmentation via Random Fourier Feature-based Gaussian Process (2507.10632v1)

Published 14 Jul 2025 in cs.LG and cs.AI

Abstract: In this paper, we propose RFF-GP-HSMM, a fast unsupervised time-series segmentation method that incorporates random Fourier features (RFF) to address the high computational cost of the Gaussian process hidden semi-Markov model (GP-HSMM). GP-HSMM models time-series data using Gaussian processes, requiring inversion of an N times N kernel matrix during training, where N is the number of data points. As the scale of the data increases, matrix inversion incurs a significant computational cost. To address this, the proposed method approximates the Gaussian process with linear regression using RFF, preserving expressive power while eliminating the need for inversion of the kernel matrix. Experiments on the Carnegie Mellon University (CMU) motion-capture dataset demonstrate that the proposed method achieves segmentation performance comparable to that of conventional methods, with approximately 278 times faster segmentation on time-series data comprising 39,200 frames.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.