Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 34 tok/s Pro
GPT-5 Medium 40 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Cameras as Relative Positional Encoding (2507.10496v1)

Published 14 Jul 2025 in cs.CV and cs.AI

Abstract: Transformers are increasingly prevalent for multi-view computer vision tasks, where geometric relationships between viewpoints are critical for 3D perception. To leverage these relationships, multi-view transformers must use camera geometry to ground visual tokens in 3D space. In this work, we compare techniques for conditioning transformers on cameras: token-level raymap encodings, attention-level relative pose encodings, and a new relative encoding we propose -- Projective Positional Encoding (PRoPE) -- that captures complete camera frustums, both intrinsics and extrinsics, as a relative positional encoding. Our experiments begin by showing how relative camera conditioning improves performance in feedforward novel view synthesis, with further gains from PRoPE. This holds across settings: scenes with both shared and varying intrinsics, when combining token- and attention-level conditioning, and for generalization to inputs with out-of-distribution sequence lengths and camera intrinsics. We then verify that these benefits persist for different tasks, stereo depth estimation and discriminative spatial cognition, as well as larger model sizes.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube