Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Fusing Large Language Models with Temporal Transformers for Time Series Forecasting (2507.10098v1)

Published 14 Jul 2025 in cs.CL

Abstract: Recently, LLMs have demonstrated powerful capabilities in performing various tasks and thus are applied by recent studies to time series forecasting (TSF) tasks, which predict future values with the given historical time series. Existing LLM-based approaches transfer knowledge learned from text data to time series prediction using prompting or fine-tuning strategies. However, LLMs are proficient at reasoning over discrete tokens and semantic patterns but are not initially designed to model continuous numerical time series data. The gaps between text and time series data lead LLMs to achieve inferior performance to a vanilla Transformer model that is directly trained on TSF data. However, the vanilla Transformers often struggle to learn high-level semantic patterns. In this paper, we design a novel Transformer-based architecture that complementarily leverages LLMs and vanilla Transformers, so as to integrate the high-level semantic representations learned by LLMs into the temporal information encoded by time series Transformers, where a hybrid representation is obtained by fusing the representations from the LLM and the Transformer. The resulting fused representation contains both historical temporal dynamics and semantic variation patterns, allowing our model to predict more accurate future values. Experiments on benchmark datasets demonstrate the effectiveness of the proposed approach.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com