Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 100 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 29 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 103 tok/s
GPT OSS 120B 480 tok/s Pro
Kimi K2 215 tok/s Pro
2000 character limit reached

User Long-Term Multi-Interest Retrieval Model for Recommendation (2507.10097v1)

Published 14 Jul 2025 in cs.IR

Abstract: User behavior sequence modeling, which captures user interest from rich historical interactions, is pivotal for industrial recommendation systems. Despite breakthroughs in ranking-stage models capable of leveraging ultra-long behavior sequences with length scaling up to thousands, existing retrieval models remain constrained to sequences of hundreds of behaviors due to two main challenges. One is strict latency budget imposed by real-time service over large-scale candidate pool. The other is the absence of target-aware mechanisms and cross-interaction architectures, which prevent utilizing ranking-like techniques to simplify long sequence modeling. To address these limitations, we propose a new framework named User Long-term Multi-Interest Retrieval Model(ULIM), which enables thousand-scale behavior modeling in retrieval stages. ULIM includes two novel components: 1)Category-Aware Hierarchical Dual-Interest Learning partitions long behavior sequences into multiple category-aware subsequences representing multi-interest and jointly optimizes long-term and short-term interests within specific interest cluster. 2)Pointer-Enhanced Cascaded Category-to-Item Retrieval introduces Pointer-Generator Interest Network(PGIN) for next-category prediction, followed by next-item retrieval upon the top-K predicted categories. Comprehensive experiments on Taobao dataset show that ULIM achieves substantial improvement over state-of-the-art methods, and brings 5.54% clicks, 11.01% orders and 4.03% GMV lift for Taobaomiaosha, a notable mini-app of Taobao.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com