Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

SLIF-MR: Self-loop Iterative Fusion of Heterogeneous Auxiliary Information for Multimodal Recommendation (2507.09998v1)

Published 14 Jul 2025 in cs.IR

Abstract: Knowledge graphs (KGs) and multimodal item information, which respectively capture relational and attribute features, play a crucial role in improving recommender system accuracy. Recent studies have attempted to integrate them via multimodal knowledge graphs (MKGs) to further enhance recommendation performance. However, existing methods typically freeze the MKG structure during training, which limits the full integration of structural information from heterogeneous graphs (e.g., KG and user-item interaction graph), and results in sub-optimal performance. To address this challenge, we propose a novel framework, termed Self-loop Iterative Fusion of Heterogeneous Auxiliary Information for Multimodal Recommendation (SLIF-MR), which leverages item representations from previous training epoch as feedback signals to dynamically optimize the heterogeneous graph structures composed of KG, multimodal item feature graph, and user-item interaction graph. Through this iterative fusion mechanism, both user and item representations are refined, thus improving the final recommendation performance. Specifically, based on the feedback item representations, SLIF-MR constructs an item-item correlation graph, then integrated into the establishment process of heterogeneous graphs as additional new structural information in a self-loop manner. Consequently, the internal structures of heterogeneous graphs are updated with the feedback item representations during training. Moreover, a semantic consistency learning strategy is proposed to align heterogeneous item representations across modalities. The experimental results show that SLIF-MR significantly outperforms existing methods, particularly in terms of accuracy and robustness.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube