Identifying Offline Metrics that Predict Online Impact: A Pragmatic Strategy for Real-World Recommender Systems (2507.09566v1)
Abstract: A critical challenge in recommender systems is to establish reliable relationships between offline and online metrics that predict real-world performance. Motivated by recent advances in Pareto front approximation, we introduce a pragmatic strategy for identifying offline metrics that align with online impact. A key advantage of this approach is its ability to simultaneously serve multiple test groups, each with distinct offline performance metrics, in an online experiment controlled by a single model. The method is model-agnostic for systems with a neural network backbone, enabling broad applicability across architectures and domains. We validate the strategy through a large-scale online experiment in the field of session-based recommender systems on the OTTO e-commerce platform. The online experiment identifies significant alignments between offline metrics and real-word click-through rate, post-click conversion rate and units sold. Our strategy provides industry practitioners with a valuable tool for understanding offline-to-online metric relationships and making informed, data-driven decisions.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.