Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Balanced Training Data Augmentation for Aspect-Based Sentiment Analysis (2507.09485v1)

Published 13 Jul 2025 in cs.CL

Abstract: Aspect-based sentiment analysis (ABSA) is a crucial fine-grained task in social media scenarios to identify the sentiment polarity of specific aspect terms in a sentence. Although many existing studies leverage LLMs to perform ABSA due to their strong context understanding capabilities, they still face challenges to learn the context information in the running text because of the short text, as well as the small and unbalanced labeled training data, where most data are labeled with positive sentiment. Data augmentation (DA) is a feasible strategy for providing richer contextual information, especially when using LLMs to create synthetic training data, but faces challenges in ensuring a high quality of the augmented data.In this paper, we propose an LLM-based ABSA approach with training data augmentation.Specifically, an LLM is prompted to generate augmented training data based on the original training data, so as to construct a new training data with larger size and balanced label distributions to better train an ABSA model. Meanwhile, in order to improve the quality of the augmented data, we propose a reinforcement learning approach to optimize the data augmentation. LLM.Experiment results and further analyses on English benchmark datasets for ABSA demonstrate the effectiveness of our approach, where superior performance is observed over strong baselines and most existing studies.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.