Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 98 tok/s Pro
GPT OSS 120B 424 tok/s Pro
Kimi K2 164 tok/s Pro
2000 character limit reached

LoRA Is Slower Than You Think (2507.08833v1)

Published 6 Jul 2025 in cs.LG, cs.AI, and cs.CL

Abstract: Low-Rank Adaptation (LoRA) is one of the most widely used techniques for fine-tuning LLMs. By introducing a small number of trainable low-rank weight matrices, LoRA substantially reduces the number of parameters that need to be updated, offering significant advantages in memory consumption and computational efficiency compared to full fine-tuning. However, we observed that LoRA does not consistently provide speed improvements across all model architectures and training setups. Motivated by this inconsistency, we conduct a comprehensive analysis of LoRA's performance and investigate the underlying factors limiting its speedup. Based on our findings, we propose several methods for more efficient fine-tuning of LLMs. We empirically evaluate these methods and compare them to LoRA, demonstrating that our approach achieves comparable or superior performance while delivering more consistent training speed improvements. Our work offers valuable insights and practical guidelines for practitioners seeking to optimize LLM fine-tuning under resource constraints.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

alphaXiv

  1. LoRA Is Slower Than You Think (8 likes, 0 questions)